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Abstract. The problem of effects superposition in the case of simultaneous loadings, an 
important issue in mechanical structures design, have been analised. A method for the mul-
tiaxial fatigue life prediction was developed. This method was applied to fatigue life calcu-
lation in the cases of cyclical loading with: – one block of normal stress and one bloc of shear 
stress; – successive blocks of normal stresses, simultaneous with successive blocks of shear 
stresses. The influence of deterioration, of mean stress and residual stress upon the fatigue 
life is introduced. The theoretical results: – have been compared with experimental results 
reported in literature; – may be used for design, as well as for experimental data evaluation. 
Numerical examples show how the obtained theoretical results may be used in practical 
cases. 
 
Keywords. Fatigue life, fracture criterion, principle of critical energy, simultaneous cyclic 
loadings, successive cyclic loadings. 
 
 
1. Introduction 
 
Fatigue is an important design criteria for mechanical structures subjected to cyclic 
loading. In this paper new relations are proposed for the fatigue life prediction of 
mechanical structures, taking into account the mixed mode loading (normal stresses 
and shear stresses), the mean stresses, residual stress, the deteriorations and the well 
known mechanical characteristics. 
In most cases involving mechanical structure design we refer to the effect caused by 
a single load. But what happens if several loads are at work? 
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Nomenclature: 
DT - total deterioration; 
Ek - specific energy of load Yk; 
Ek,cr - critical value of the specific energy Ek; 
Mσ, Mτ - material constant; 
N - number of cycles up to failure; 
Pcr - critical participation; 
Pk - participation of specific energy Ek; 
PT - total participation of specific energies; 
T - period of cycle; 
Yk - the load k; 
k; k1 - material constants; 
m - material constant; 
n - number of loading cycles; 
t - time; 

 ;/1α ;/1α 11 kk   - material constant; 

σ - normal stress; 
σa - normal stress amplitude; 
σm - mean stress; 
σmin; σmax - minimum and maximum normal stress; 
τ - shear stress; 
τa - shear stress amplitude; 
τm - mean shear stress; 
τmin; τmax - minimum and maximum shear stress; 
τres - residual shear stress; 
σu; τu - ultimate stresses; 
σres - residual normal stress; 
σR - normal fatigue limit at the stress ration maxmin σσR ; 

τR - shear fatigue limit at the stress ration maxmin ττR ; 

σ-1; τ-1 - fatigue limits. 
 
In order to solve the problems involving multiple loading one should first distinguish 
between cases of simultaneous loading (superposition of loadings) and successive 
loadings (cumulation of loadings). 
Superposition of loadings refers to the total effect due to simultaneous loading of 
two or more loadings (Fig. 1, a). Cumulation of loadings refers to the total effect due 
to two or more successive loadings (Fig. 1, b). 
The cyclic fatigue loading with successive blocks is characterised by stress ampli-
tude ia,σ  and mean stress im,σ , a number of cycles in . 

The fatigue life calculation under successive loadings with several blocks of normal 
stresses  iimia n;σ;σ ,,  is done by cumulating the deteriorations, for example by 

using Palmgren-Miner rule [1, 2], 

 1







ii N

n
, (1) 
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Fig. 1. Loading with simultaneous blocks of cyclic normal stress, σ, and shear stresses, τ, (a) and with 

successive blocks of cyclic normal stresses (b). 
 

where ni in the number of loading cycles and iN  is the number of cycles up to failure 

for the ith stress rang. Palmgren-Miner rule is inaccurate, but its simplicity and the 
minimal amount of data necessary for implementation makes it a popular method for 
estimating fatigue life [3]. Several models of multiaxial-block loading, generally 
modified Palmgren-Miner’s law, have been analysed [4]. The state of the art 
concerning some fatigue life models similar to Palmgren-Miner law (based on 
cumulative rule) has been discussed in the paper [5]. Meneghetti et al. assume the 
heat energy as an index of fatigue damage. Minner’s rule was applied in terms of 
energy rather than stress amplitude [6]. Recently there have been established rela-
tions for the calculation of the accumulation of the loading action in the case of the 
non-linear power law behavior [7]. Several results reported in literature: 
Gladskyi and Fatemi [8] presented the current state of research on the outcome of 
fatigue loading with axial stresses and, separately, with shear stresses. A few con-
siderations can be gleaned from literature:– in comparison to axial loading, multi-
axial fatigue studies are  relatively  small; – multiaxial fatigue strength is signifi-
cantly affected by the nominal load ratio [9]; – a significant notch size effect on 
fatigue life has been observed [10]; – the addition of static compression to cyclic 
torsion generally results in longer lifetime, while static tension added to cyclic tor-
sion results in shorts fatigue life in comparison with pure torsion cycling [11]; – the 
method for fatigue life calculation taking into account the mean stress effect pro-
posed in [12] has as a main limitation the need to know two S – N curves; – the 
Bauschinger effect may play a significant role on fatigue life of materials and should 
then be considered in fatigue life prediction models [13]; – tensile pre-straining is 
beneficial to ratcheting fatigue life, while compressive pre-straining is detrimental 

[14]; – the fatigue limit value depends on the kind of loading [15]: the ratio between 
the torsional and the uniaxial fatigue limit (or endurance) is seen to vary in the range 
0.5 – 1.0 [16]. 
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Ways of improving the fatigue behavior of welded structures, either during design, 
or during fabrication, or else by special material characteristics, are addressed in the 
paper of Wolfgang [17]. 

 
Fig. 2. Simultaneous loading a time tf, with cyclic normal stresses, σ, with the same period of cycle, 

 ji TT ,τ,σ  . 

Susmel [18] proposes a simple formula suitable for estimating the fatigue strength of 
welded connections whose weld beads are inclined with respect to the direction 
along which the fatigue loadings is applied. Fatigue strength is accurately estimated 
by using the stress components relative to the plane experiencing the maximum 
shear stress range. 
Generally the multiaxial fatigue life prediction of engineering materials has been a 
challenging task for over past decades. To calculate the lifetime of a specimen, taken 
from a material with nonlinear behaviour in the case of simultaneous loading with 
blocks of normal stress and blocks of shear stress, no adequate calculation relation 
has been found up to now. 
This paper, an extension of the paper [5], establishes a general relation for calcu-
lating lifetime in the case of superpositions of cyclic fatigue loadings with normal 
stresses, σ, and shear stresses τ (Fig. 2) for specimens and mechanical structures of 
materials with nonlinear power-law behavior. 
 
2. Proposal of a new calculation method for fatigue life 
2.1. Loading cases 
 
We have signaled out the following loading cases: 
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– time of cycle, σt of normal stress loading is greater than time of cycle, τt , of shear 

stress loading  τσ tt  . In such cases, the superposition of effects with shear and 

normal stresses, occurs only a number of loading cycles, 
 τττ Ttn  , (2) 

after which the cyclic loading is only with normal stresses, for a number of cycles, 
     στσσ Ttttn  ; (3) 

– time of cycle τσ tt  , when the superposition of effects is done for a number of 

cycles, 
 σσσ Ttn  , (4) 

after which the cyclic loading occurs only with shear stresses, for a number of cy-
cles, 
     τσττ Ttttn  ; (5) 

– the time of cycle of loadings are equal τσ tt  , whereupon the number of loading 

cycles is calculated with relations (2) and (4). 
 
2.2. A new method for fatigue life calculation 
 
Furthermore, one first solves the case τσ tt   when stresses σ  and τ  are the same 

frequencies (Fig. 2), by using the principle of critical energy presented and used in 

[5;7; 19-30]. According to this principle total participation of the specific energy 
involved, TP , is equal to the sum (cumulation) of specific energy participations 

corresponding to each load applied, Pk, 
 

k
kT PP . (6) 

The individual participation of specific energy is defined as [5], 

 k
crk

k
k E

E
P δ

,

 , (7) 

where Ek is the specific energy (energy of a unit volume, J/m3 or energy of a unit 
mass, J/kg) introduced by a load kY . Ek,cr is the critical value of Ek (it corresponds to 

fracture); 
kδ 1, if the load, Yk, action is in the sense of the fracture process and 

kδ 1 , if the load, Yk, action opposes the fracture process. 
In the case of fatigue loading the total participation due to superposition of normal 
and shear stress action after n loading cycles is given by the relation, 
      τσ τ;σ; nPnPnP TTT  , (8) 

where, 

         , τ;τ;  and σ;σ;
1

ττ
1

σσ 



p

j
jT

k

i
iT nPnPnPnP  (9) 
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are the total participation of specific energies due to cumulation of cyclic normal 
stresses and due to cumulation of cyclic shear stresses, respectively. 
One considers the general case of nonlinear behavior according to the following 
power laws: 

 ,γ  τand εσ 1
τσ

kk MM   (10) 
where σ and τ are normal stress and shear stress; ε, γ are strain and shear strain; σM , 

τM , k and k1 are materials constants. 
In the case of nonlinear behavior (10), the total participation of the specific energy in 
the case of loading with only one block of stress is [30]: 
- due to normal stress, 

  
mi

icrm

m

icra

a
i nP σ

1α

,

1α

,

δ
σ

σ

σ

σ
 σ; 

























; (11) 

- due to shear stress, 

  
mj

jcrm

m

jcra

a
j nP τ

1α

,

1α

,

δ
τ

τ

τ

τ
 τ;

11


























, (12) 

where 
mσ

δ  and 
mτ

δ  are correlated with the mean stress: 

 








;0σ when ,1

;0σ when ,1   
δσ

mi

mi

mi
    












.0 when τ,1

;0 when τ,1   
δτ

mj

mj

mj
 

The value of the exponents k1α   and 11 1α k  depend on the material behavior 
(10) and are influenced by the rate of the external load [31]. 
The fatigue life calculation, based on he concept of total participation of specific 
energy, can be done considering the dependence of critical stress value on the 
number of loading cycles (  Ncrσ  and  Ncrτ . In this case the participation of the 
specific energy due to normal stress and shear stress, respectively, after N cycles 
results from relationships (11) and (12) where  Ncra 1, σσ   and  Ncra 1, ττ  . 

The stresses  N1σ ;  N1τ  are fatigue strengths after N loading cycles with 

normal and shear stresses, respectively, and ucrm σσ ,   and ucrm ττ ,   such as, 

     ;δ
σ

σ

σ

σ
;σ σ

1α1α

1
mi

iu

m

i

a
i N

NP 






















 (13) 

     m

ju

m

j

a
j N

NP τ

1α1α

1

δ
τ

τ

τ

τ
 τ;

11
























. 

The simultaneous normal and shear stress loading becomes critical if [32], 
    tPnP crT  , (14) 
where the left side of this Eq. calculates with the Eq. (8), and the right side, the 
critical participation at the time t, is 
    TDtP Tcr 1 , (15) 
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with  tDT  the total deterioration due to cracks, preloading, corrosion, creep, aging 
etc. [32]. En consequence one can write, 

      tDnPnP T

p

j
j

k

i
i 



1τ;σ;
1

τ
1

σ , (16) 

which is a fracture criterion. 
The fatigue curve is described by Basquin’s law [33], 

 ANm
a σ , (17) 

where A and m are constants corresponding to each domain of the fatigue curve (Fig. 
3). 

 
Fig. 3. Fatigue (Wöhler) curve: I; II; III – the three domains of the fatigue curve. 

 

For the normal stress fatigue curve, for example slope 2m  (domain II) is 
usually assumed to be a constant for steels, for both welded joints and base material 
 32 m , as well as for aluminium alloy welded joints  2m  changes from class to 
class between 3.4 and 4.3). 

 
3. Fatigue life criterion in the case of loading with cyclical blocks of normal 
stresses and shear stresses 
 
a. From the relation (8), (9), (13) - (16) it has been obtained [5] the fatigue life due to 
several block of normal stresses       imiamama ,,2,2,1,1, σ;σσ;σ,σ;σ , 

   σ

1α

σ

σ
C

N

n m

ii a











 , (18) 

where in ,σ  is the effective number of cycles with the normal stress amplitude ia,σ , 

while   iaN σ  is the fatigue life for the ith normal stress amplitude  ia,σ  and  

  tDC T

fu

m
m













σ

1α

σ δ
σ

σ
1  (19) 
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where mσ  is the mean normal stress,   fum σ/σ  is the value of this ratio in the final 

(last) block of normal stress loading. If one considers the local residual normal 

stress, resσ , one add up the term 






















res
u

res
σ

2

δ
σ

σ
 to the σ of (19) Eq. C . 

The individual fatigue life,  aN σ  in Eq. (18), for each normal stress amplitude aσ  
(Fig. 3), can be calculated using the following equations [5]: 
– for diagram Na σ , 

1

I
σ

σ
m

a

y
yN 








  - for domain I   uay σσσ  ; 

  aN σ   ya
a

N σσσ   IIdomain for   -  
σ

σ
1

m

II

1
0

2









 

 ;   (20) 

  11

III

1
0 σσ IIIdomain in   curvefor  - 

σ

σ
3


 







 a

m

a

CDN ; 

– for diagram ,σmax N  
1

maxσ

σ
m

I

y
yN 








  - for domain I   uy σσσ max  ; 

  aN σ   yR

m

RN σσσ  IIdomain for  -  
σ

σ
max

IImax
0

2









 ;   (21) 

  ,σσ IIIdomain for  - 
σ

σ
max

max
0

3

R

m

III

RN 







  

where Rσ  is the fatigue limit at the stress ratio maxmin σσR . In general [5], 

    1α11α1α
1 σσσ


  mR . (22) 

b. In the case of several blocks of shear stresses       jmjamama ,,2,2,1,1, τ;ττ;τ,τ;τ  

for a nonlinear behavior given by the second law (10), by a similar procedure as in 
the case of normal stresses one obtains, 

   τ

1α

τ

1

τ
C

N

n m

jj a











 , (23) 

where jn ,τ  is the effective number of cycles with the shear stress amplitude ja,τ , 

while    jaN τ  is the fatigue life for the jth shear stress amplitude  ja,τ  and 

  tDC T

fu

m
m









 ττ δ

τ

τ
1 . (24) 



 
 
 
 
 

 Journal of Engineering Sciences and Innovation, Vol.1, Issue 1 / 2016 9 

 

where mτ  is the mean shear stress;   fum ττ  in the value of this ratio in the final 

(last) block of shear stress loading. If one considers the local residual shear stress, 

resτ , one  add up the term 






















res
u

res
τ

2

δ
τ

τ
 to the Eq. (24) of τC . 

By a similar procedure as for the normal stress amplitude, one may write: 
– for Na τ  diagram, 

1

I
τ

τ
m

a

y
yN 








  - for domain I   uay τττ  ; 

  aN τ   ya

m

IIa

N τττ IIdomain for  -  
τ

τ
1

1
0

2









 

 ;  (25) 

  11

III

1
0 ττ  domain  CD curvefor  - 

τ

τ
3


 







 a

m

a

IIIN , 

where 0 and NN y  as well as 321  , , mmm  correspond to the fatigue curve Na τ , 

similar to curve Na σ ; 

– for Nmaxτ  diagram, 

1

Imaxτ

τ
m

y
yN 








  - for domain I   ;τττ max uy   

  aN τ   ; τττ IIdomain for  -  
τ

τ
max

IImax
0

2

yR

m

RN 







   (26) 

  . ττ  CD curve III,domain for  - 
τ

τ
max1

IIImax
0

3

R

m

RN 







  

In general,  

   1α

1
1α1α

1 1
11 τττ 

  mR . (27) 

c. In the case of cyclic loading by both (superposition), blocks of normal and blocks 
of shear stresses (Fig. 2), with fttt  τσ , taking into account the principle of crit-

ical energy, one may write the following general relation: 

     C
N

n

N

n

j

m

jai

m

ia
























 1α

τ

1α

σ

1

τσ
, (28) 

where for the sample without residual stresses  0σ res , 
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min( σC ; τC ) - if the loading by σ and τ is successive; 

C   (29) 

 tDT

fu

m

fu

m
mm






















τ

1α

σ

1α

δ
τ

τ
δ

σ

σ
1

1

 - if the loading by σ and τ is  

simultaneous (Fig. 2). 
 

Due to   fum σσ  and   fum ττ  rations the relation (18), (23) and (28) describes the 

influence of load sequence, load level and load interaction effects. 
On the other side, these theoretical relationships, based on the physical behavior of 
the sample, do not contain empirical constants, which, generally, results by fitting 
the proposed Eq. with the experimental results. 
 
4. Experimental confirmations 
 
Tubular type 304 stainless steel sample have been obtained as follows [34]: a bar 
was cut to the specimen length, then the inner hole was gun – drilled and honed 
through the center of the bar, the external surface was machined and finally, the gage 
section was ground and polished with aluminia powder. These mechanical processes 
introduces in the sample material, normal residual stresses 0σ res  (compression 

stresses). En consequence C from Eq. (29) becomes Cres, respectively 

 
2

σ

σ










u

res
res CC . (30) 

In the case of cyclic loading path, tension - compression followed by torsion, Eq. 
(28) becomes 

    
2

1α

τ

1α

σ

σ

σ
1

τσ

1





























u

res
m

a

m

a N

n

N

n
, (31) 

because the sample was undeteriorated  0TD , and the cyclic loadings have been 

fully reversed ( 0σ m  and 0τ m ). The sum in the left part of Eq. (31) is less than 

one. The experimental results show the same 1resC  [35]. 

Nowadays the fatigue life may be calculated by Palmgren – Miner’s cumulative 
fatigue damage rules (1). This eq. always predicted a longer fatigue life than the 
observed one [2]. 
With   m1α   and 1σ C  the eq. (18) becomes Palmegren – Miner’s rule (1). One 

can observe [5]: 
– in the case of a sample without residual stresses  0σ res  and undeteriorated 

 0TD : 
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1σ C , in only a particular case, namely for alternating symmetrical loading 

 1R  when 0σ m ; 

1σ C , if 0σ m  and 1σ C , if 0σ m   1R ; 

– in the case of a sample without residual stresses  0σ res  but cracked and 

pre-loaded sample (when 0TD ), 1σ C , for alternating symmetrical loading 

 1R ; 1σ C  or 1σ C  in the general case with 1R . 
Experimentally it has observed that C takes values that can be either less or higher 
the unity. Miner [2] has shown that fracture occurred at 49.161.0σ C . A disper-

sion of σC  values between 0.2 and 3.0 was obtained. Numerous tests have shown 

that values of σC  at failure may deviate considerably from unity, taking values 
between 0.1 and 10 [35]. 
Some experimentally determined values for the exponent in eq. (18) are equal [1;2] 

to 0.6…1.0. For some steels have been found [5] the exponent   4.2...2.01α  m . 

En consequence, generally, the exponent   11α  m  and 1σ C , as it results from 
eqs. (18) and (19), as well from literature [36]. 
A static stress as well as prestresing stress adds to the mean stress and consequently 
modified the value of σC  or τC . Through these variables the fatigue life modifies as 
it results from eqs. (19), (24) and (29) and as it was reported in literature [11; 15]. 

 
5. The influence of mean stress on the fatigue life 
 
The value of the right term in the relations (18), (23) and (28) influences the life 
time. In the case of undeteriorated sample  0TD  loaded with normal stresses, 
from Eq. (19) results,  

 
m

fu

mC σ

1α

σ δ
σ

σ
1 












, (32) 

 
Fig. 4. Three different blocks of cyclic normal stresses. 
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If the mean stress is a compression stress  0σ
1
m , 1δσ 

m
, such as 1σ C . But, 

if the mean stress is a tension stress  0σ
2
m , than 1δσ 

m
, such as 1σ C . For 

alternating symetrical loading  0σ
3
m  results 1σ C . This may explain why the 

succession of loads influences the result. For example (Fig. 4): 
– the loading such as the final block of stresses is the block 3  0σ 3, m , gives 

1σ C ; 

– the loading with a final block like the block 2  0σ 2, m , gives 1σ C ; 

– the loading with a final block like the block 1  0σ 1, m , gives 1σ C . 

In the case of undeteriorated sample  0TD , loaded with shear stresses, from Eq. 
(24) results, 

 
m

fu

mC ττ δ
τ

τ
1 








 , (33) 

The discussion about the influence of the mean shear stress, mτ , upon τC  is similar 

to above one for mσ . It must only replace mσ  by mτ . 
 
6. Numerical examples 
 
1. A shaft is made of steel featuring the following mechanical properties: 
ultimate stresses, MPa 640σ u  and MPa 460τ u ; yield stresses, MPa 386σ y  

and MPa 240τ y ; fatigue limits MPa 290σ 1   and MPa 195τ 1  ; 
410yN cycles; 6

0 102N  cycles; 25.0k ; 25.01 k ; 5.21 m  and 5.32 m . 

The shaft is undeteriorated,   0tDT . 
We consider two different cases of fatigue loading. Each of them is analysed to 
establish if the fatigue load is or is not dangerous. 
a. The shaft is loaded by simultaneous two blocks of cyclic normal stresses (Table 1) 
and two blocks of shear stresses (Table 2). 
 

Table 1 

 The block of loading, i 1 2 

1. Normal stress, MPa 
maxσ  450 360 

minσ  0 -360 

2. Number of cyclic loadings in each block, in ,σ  3102  510  
3. Domain of loading (Fig. 3) I II 

4. Stress amplitude, ia,σ , MPa 225 360 

5. Mean stress, im,σ , MPa 225 0 

6. Number of cycles to fatigue failure,  aiN σ  410681.0   938.0 106 
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For the first block of normal stresses the stress amplitude and the mean stress are, as 
follows: 

    MPa 22504505.0σσ5.0σ minmax a ; 

    MPa 22504505.0σσ5.0σ minmax m . 

Because yσσmax   the loading corresponds to the domain I (Fig. 3). Out of rela-

tionship (18)  

    08625.0
10681.0

102

σ

5.2

5

I
4

3
1α

I

σ
σ 

























m

aN

n
nP , 

where 425.011α  k  and out of relationship (21), for the first (1) block of 
loading (Table 1) results, 

  4
5.2

4

Imax

10681.0
450

386
10

σ

σ
σ

1


















m
y

ya NN  cycles. 

For the second block (2) of loading (Table 1), out of relationship (20) results: 

  6
5.3

6

II

1
0 10938.0

360

290
102

σ

σ
σ

2
















 

m

a
a NN  cycles. 

These values of  aN σ  are show in Table 1. 

For the blocks of cyclically shear stress (Table 2) loading the number of cycles to 
fatigue failure are: 

  5
5.3

6

II

1
0 10428.4

300

195
102

τ

τ
τ

2
















 

m

a
a NN cycles – in the domain II 

(Eq.25) for the first block (1) of loading (Table 2); 
Table 2 

 The block of loading, j 1 2 

1. Shear stress, MPa 
maxτ  300 250 

minτ  -300 100 

2. Number of cyclic loadings in each block, jn ,τ  5102  510  

3. Domain of loading II II 

4. Shear stress amplitude, ja,τ , MPa 300 75 

5. Mean shear stress, jm,τ , MPa 0 175 

6. Number of cycles to failure,  ajN τ  510428.4   510905.7   

  5
5.3

6

max
0 10905.7

250

76.233
102

τ

τ
τ

2


















m

II

R
a NN  cycles – in the domain 

II (Eq. 26) for the second (2) block of loading (Table 2), 
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where according to eq. (27), with 425.011α 11  k , 

    74.2131175195τττ 5

1
551α

1
1α1α

1- 1
11  

mR MPa. 

These values of  aN τ  are shown in Table 2. 

Out of the left part of the Eq. (28), 
 

     
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Because the σ and τ cyclic loadings are simultaneous, out of relationship (29), 
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Because   CnPT   - the fatigue loading is not dangerous. 

2. The same shaft as in the first example is loaded by cyclic normal and shear 
stresses. The shaft has a crack   na 3 mm whose critical value due to normal 

stresses is mm 10cra . The number of both cyclic loadings 6
0τσ 102 Nnn . 

The shaft steel is characterised by fatigue limits 1σ  and 1τ  (curve CD in Fig. 3). 

The shaft is cyclically loaded simultaneous by normal and shear stresses: 
MPa 250σmax  ;   MPa 250σmin  ; MPa 200τmax  ;   0τmin  . As a result, 

- the normal stress amplitude   MPa 250σσ5.0σ minmax a ; 

- the normal mean stress   0σσ5.0σ minmax m ; 

- the shear stress amplitude   MPa 100ττ5.0τ minmax a ; 

- the shear mean stress   100ττ5.0τ minmax m MPa. 

Out of relationships (8) and (13) - (16), one obtains, 

 B
u
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
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σ
,  (34) 

where 

  tDB T
u

m

u

m
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,  (35) 

The left part of relation (34) becomes,  
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while, 
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where the deterioration due to the crack mm 3a  is [32], 
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Because   BnPT   this loading by cyclic normal stress and cyclic shear stress is not 
dangerous. 
 
7. Conclusion 
 
In the paper the problem of fatigue life was discussed. A new model of fatigue life 
calculation was proposed based on the principle of critical energy. It takes into 
account the nonlinear behaviour of the loaded material, the mean stress and its sign, 
the deterioration and the residual stress. 
Using non-dimensional concepts (introduced by the principle of critical energy) and 
defining them in the case of fatigue loading of nonlinear materials, a unitary theory 
was established for the fatigue life of sample under cyclic loading produced by 
several blocks of normal stresses (18), by several blocks of shear stresses (23) and by 
superposition of several blocks of normal stresses and by several blocks of shear 
stresses (28). 
Numerical examples show how to use the proposed fatigue life rule. 
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